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The electronic structures of the extended conjugated electron acceptors 1-3 
were investigated within the framework of a semiempirical INDO and a 
7r-electronic Hartree-Fock Hamiltonian. Utilizing Koopmans'  theorem, pre- 
dictions are made of the magnitude of the ionization potentials and the 
electron affinities and their dependence on the molecular geometry ("olefinic" 
vs. "aromatic")  and the nature of the acceptor functions. The validity of the 
Hart ree-Fock approximation has been studied by means of the Thouless 
stability conditions. The INDO and ~--SCF wave functions turn out to be 
adequate descriptions of the ground states of 1-3. A single particle hole pair, 
due to a small energy separation between the highest occupied and lowest 
virtual orbital and a large Coulomb integral with respect to these orbitals 
leads to non-singlet (triplet) instabilities or near instabilities of the wave 
functions indicating the importance of spin correlation in 1-3. 
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I. Introduction 

The synthesis of the tetrathiafulvalene (TTF)/7,7,8,8-tetracyanoquinodimethane 
(TCNQ) complex and the discovery of its remarkable conductive properties 
caused an intense search for further "organic metals" or even for organic high- 
temperature super conducting compounds [1]. The quest for new derivatives of 
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T-FF or related donors turns out more fruitful than that for new acceptors superior 
to TCNQ where one thinks mainly of TCNQ analoga with more extended 
conjugated ~--systems [2]. Such acceptors should exhibit smaller on-site electron- 
electron repulsion which is important for the conductive properties in the simple 
framework of the Hubbard Hamiltonian [1, 3]. Furthermore the use of donors 
larger than TTF requires acceptors larger than TCNQ, since the organic metal 
donors and acceptors should be of comparable size [4]. Moreover extended 
acceptors might be of interest as building blocks in cyclophanes where the 
interaction with a strong donor could lead to a biradical-ionic ground state [5]. 

The synthesis of extended TCNQ analoga is certainly not an easy task and 
one of the few hitherto known examples is 13,13,14,14-tetracyanopyreno-2,7- 
quinodimethane (TCNP) 3 [6,73 (cf. Fig. 1). However, not much is known 
experimentally about the acceptor capability of 3 and therefore a theoretical 
investigation of such extended acceptors is desirable on condition that the utilized 
theoretical procedures allow reliable conclusions on the electronic structure and 
the molecular observables of interest, e.g. electron affinities EA. 

Usually the independent particle model in the form of the restricted Hartree-Fock 
(HF) approximation with its mean-field approach serves as a starting-point for 
most of the quantum chemical calculations, both of the ab initio and the semiem- 
pirical type. Even procedures beyond HF, e.g. configuration interaction schemes, 
proceed generally from HF orbitals for the ground state. The stability of the 
independent particle approach and the importance of many-body effects can be 
studied by means of the Thouless stability conditions [8] or their extensions with 
respect to the electronic structure of molecules by Ci~ek and Paldus [9]. 

Our studies on the HF instabilities of the TTF/TCNQ system [10] have shown 
that TCNQ represents a (nearly) HF unstable (non-singlet, see next chapter) 
molecule where above all spin correlation is important. It is an interesting 
theoretical question whether HF instabilities will be more likely with larger TCNQ 
analoga or similar compounds. Consequently in the present publication we want 
to investigate the conjugated planar systems 1-3 displayed in Fig. 1 with respect 
to the electronic structure, some molecular observables like the EA or the ioniz- 
ation potential IP, and the HF stability conditions. We expect an elucidation of 
the following questions: (i) How do the electronic structure and the molecular 
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Fig. 1. Compounds under study 
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observables of interest depend on the nature of the electron withdrawing group 
X, i.e. what kind of changes are induced by the replacement of X = CH2 (1) by 
X - - O  (2) and X = C(CN)2 (3)? (ii) How do geometrical parameters influence 
the electronic structure? (iii) Does the HF approach represent an adequate 
description of the ground state of 1-3? 

2. Computations method 

A b  initio procedures are prohibitive due to the size of the molecules of interest. 
Therefore we use a recently developed semiempirical INDO Hamiltonian [11] 
being parametrized in order to mimic the computational results of time consuming 
high quality ab initio methods in the framework of dressed renormalized two- 
electron integrals leading to a reduction of the residual interaction. In order to 
study the dependence of the electronic structure on the geometry of the com- 
pounds 1-3 we have chosen two geometrical models. In the "olefinic" model 
(denoted as la, 2a and 3a) we use alternating bond lengths corresponding to the 
formulae given in Fig. 1, whereas a common aromatic bond length is taken for 
all CC bonds in the pyrene unit in the "aromatic" model (denoted as lb, 2h and 
3h). Standard values [12] have been taken for all bond lengths. 

Since 1-3 are planar conjugated systems we shall compare the results of the 
INDO Hamiltonian with those of the or-electronic approach which was used 
extensively in HF and instability calculations on extended or-systems [13]. The 
~--SCF procedure employed here is that of Younkin et al. [14] which was 
successfully applied to the calculation of EAs and IPs and excited states of 
negative ions of a large series of conjugated compounds. This r method 
yields automatically self-consistent bond lengths which do not depend on the 
starting geometry, i.e. the olefinic or the aromatic geometrical model. 

The stability conditions for the restricted HF wave function ~o are given by the 
eigenvalue problems 

M " C a = A ~  (1) 

where a =s,  c or t stands for the singlet, non-real (complex) or non-singlet 
(triplet) instability problem [9, 15, 16]. The matrix elements of M a are given as 
follows 

M i~k,~k = ek -- ei + faKik --Jik (2) 

mak,jl = go ( ik l j l )  + ha ( il]jk ) - ( ~l kl) (3) 

where (fa, g~, he) = (3, 4, -1)  if a = s, (1, 0, I) if a = c and (-1,  0, -1)  if a = t. The 
indices i k / j l  symbolize orbital fluctuations (OFs) c ~ d ~ k / c ~ j ~ 4 ~ t  from the 
occupied HF orbitals ~b~, ~bj into the virtual ones qSk, ~br. J~k and K~k are the 
Coulomb and exchange integrals of the orbitals ~b~ and ~bk and the four-index 
integral (ij[k/) is defined by (c~i(1)c~i(1)[e2r~llc~k(2)~l(2)). 

The global stability condition (singlet, complex and triplet) of the HF wave 
function ~o requires that all eigenvalues h a are positive, ~o is called singlet 
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unstable if at least one A s _ 0. Then there exists another closed shell wave function 
tit which is degenerate with ~o (A s = 0) or lower in energy (AS< 0). The spatial 
symmetry is broken in �9 if the associated eigenfunction C s consists of O F s  
~/~i ~ (~k where ~bi and ~k belong to different irreducible representations of the 
spatial point group of the molecule. Such solutions are usually called charge 
density waves [16]. In the case o fa  A t -< 0 ~o is called non-singlet (triplet) unstable 
and an unrestricted HF solution (spin-density wave [17]) exists with the same or 
lower energy than that of ~o- A vanishing or negative ;t c indicates the existence 
of a complex set of  one-electron wave functions with equal or lower energy and 
~o is called non-real (complex) unstable. As in the case of singlet instability the 
spatial symmetry may be violated in the unrestricted or complex solution if the 
OFs ~bi-~ thk described by C t or C c do not transform according to the totally 
symmetric representation of the spatial point group. 

The study of the Thouless instability conditions is a successful approach to 
analyze the importance of electron correlation and possible symmetry violations 
in the molecular systems. Electron correlation alone could also be investigated 
by means of an ordinary configuration interaction scheme. However, the huge 
number of  doubly excited configurations leads to considerably larger matrices 
than M a, since M a is made up only from single excitations. 

In the case of 1-3 (INDO) or 3 (~r-SCF) the eigenvalue problems (1) had to be 
restricted to 121 ( INDO) and 100 (Tr-SCF) OFs due to our current computational 
capacities. The neglected OFs would slightly reduce the lowest A a roots. Therefore 
the criterion A a _< 0 for defining unstable HF solutions is replaced by the approxi- 
mate criterion A a _ ~7 where r/ is a small positive energy. Semiempirical Hamil- 
tonians with dressed two-electron integrals, as for example the Hamiltonians 
used here, implicitly contain part of the correlation effects and of the screening 
of the core electrons [l 8]. Consequently A a values obtained in the framework of 
ab initio methods will be significantly lower although the nature of  the correspond- 
ing eigenfunctions C a and the constituent OFs will be the same [19]. 

The starting orbitals for the HF procedure are obtained by a Hiickel-type 
approach. The SCF-iterations are performed with preselected configurations and 
Hartree-damping [20] is employed in the case of the INDO calculations. 

3. The electronic structures of  1-3  on the HF level 

Compound 1 belongs to the class of  alternant hydrocarbons. Consequently the 
~r-SCF procedure with the tight-binding approximation for the resonance integrals 
produces a uniform charge distribution. This is approximately verified by our 
INDO calculation where the small deviations from the uniform charge distribution 
are mainly caused by the polarity of the C - - H  bonds. The heteroatoms in 2 and 
3 do not lead to significant changes in the [NDO charges in the pyrene unit with 
respect to l ,  only the C = O  bonds in 2 and, to a lesser extent, the C ~ N  bonds 
in 3 are polarized as expected. Differences in the charge distributions of  the 
olefinic and the aromatic geometrical model are negligible. Without an additional 
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Fi~. 2. Orbital energy scheme for 1-3 according to the 
INDO ( ) and 7r-SCF method (---) 

OI ci/eV 
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-12 �9 ~ 
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geometry optimization which would be too computer time intensive we cannot 
definitively conclude from our INDO results on the energetical most favorable 
geometry of 1-3. The self-consistent bond lengths of the ~r-SCF procedure in the 
pyrene unit of 1-3 are intermediate with respect to the olefinic (Xa) and aromatic 
(Xb) models. 

According to Koopmans'  theorem [21] the orbital energies eh and e~ of the highest 
occupied orbital (HOMO) 4~h and the lowest virtual orbital (LUMO) q~ are 
measures for IP and EA, i.e. IP=- -eh  and E A ~ - e l .  The INDO orbital energy 
scheme is displayed in Fig. 2. We can assume that the olefinic and aromatic 
models constitute the upper and lower limits of e h and e~. This is verified in the 
case of 1 where we have repeated the INDO calculations utilizing the ~'-SCF 
bond lengths. IPs obtained with Koopmans '  theorem from the INDO eh values 
are generally too high by about I eV [1 t]. Taking this into account we obtain for 
1, 2 and 3 IPs in the range 6.9-8.0, 8.7-9.5 and 7.7-8.8 eV where the smaller values 
are connected with the aromatic geometries Xb. So far there is not much experience 
about the correlation of EA and el, but the comparison of the calculated e~ = 
-3 .0  eV [10] and the experimental EA = 2.8 eV [22] for TCNQ suggests that EAs 
calculated by means of Koopmans'  theorem are too large by about 0.2 eV. With 
such a correction we predict for 1, 2 and 3 EAs in the range 1.9-3.1, 2.8-3.9 and 
2.8-4.3 eV, where now the smaller values belong to the olefinic models Xa. 
Obviously larger (smaller) EAs for the aromatic (olefinic) structures correspond 
to smaller (larger) IPs. As expected EA of  2 is considerably larger than EA of 1 
if we compare corresponding geometrical models, i.e. l a  with 2a and lb with 2b. 
However, the difference in e~ and hence in EA between 2 and 3 is smaller than 
that between 1 and 2. The 7r-SCF LUMO energies e~ decrease in the series 1-3, 
cf. Fig. 2. According to the regression line (12) in Ref. [14] we obtain EAs for 
1, 2 and 3 of 1.8, 2.7 and 4.1 eV. Thus both theoretical methods predict an increase 
of the acceptor capability in the series 1-3. The TCNQ analogue 3 should be a 
significantly better electron acceptor than TCNQ with EAe• = 2.8 eV [22]. Similar 
as with the INDO approach the ~r-SCF model predicts an increase of IP from 
1 to 2, whereas the ratio of the IPs of  2 and 3 is different with both numerical 
procedures. By using the regression line (13) of Ref. [14] the 7r-SCF Hamiltonian 
predicts IPs for 1 and 2 or 3 of 6.4 and 7.9 eV. 
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Fig. 3. Schematical representation of the INDO 
frontier ~r-orbitals of la  and 3a and of the non- 
bonding orbitals ~/~39 (H+) and 'b4o (n_) of 2a 

The decrease of e h and el caused by the replacement of the acceptor function 
X = C H 2  in 1 by X = O  in 2 can easily be rationalized by using first order 
perturbation theory since firstly the 7r-orbitals ~bh and qSt are related through the 
approximate validity of the pairing theorem [23] and secondly the orbital 
coefficients on the acceptor functions X are numerically large, cf. Fig. 3 where 
HOMO and LUMO of la  and 3a are displayed as representative examples. The 
corresponding orbitals of 2a or the aromatic models and of the zr-SCF procedure 
for 1-3 are similar to those given in Fig. 3. Such simple arguments are inapplicable 
for the comparison of 2 and 3. Only the analogy with p-benzoquinone and TCNQ 
with EAexp = 1.8 and 2.8 eV [22] suggests that 3 should be a considerably better 
acceptor than 2. Another consequence of the approximate validity of the pairing 
properties of HOMO and LUMO of 1-3 within the INDO approach is the smaller 
HOMO-LUMO gap g = e ~ - e  h f o r  the aromatic models Xb with respect to the 
corresponding olefinic ones Xa, cf. Fig. 2. According to first order perturbation 
theory the lengthening of the formal double bonds in Xa increases eh but decreases 
e~ due to the phases of the 7r-basis functions in HOMO and LUMO, cf. Fig. 3. 
On the other hand the shortening of the formal single bonds in Xa reduces eh as 
well as et. Therefore the LUMO is necessarily stabilized whereas the destabilizing 
effects obviously preponderate in the HOMO. 

4. HF instabilities of the INDO HF wave functions 

The INDO calculations lead to a decreasing HOMO-LUMO gap g in the order 
2 > 1 > 3, cf. Table 1. A small HOMO-LUMO gap g is a first hint at the possible 
inadequacy of the HF one-determinant solution for the ground state. The aromatic 
geometries Xb exhibit g values which are smaller by at least 1.8 eV than those 
of the corresponding olefinic structures Xa and even smaller than that calculated 
for the T T F / T C N Q  system [ 10] which is characterized by non-singlet instabilities. 
Therefore the occurrence of HF instabilities should be considered in electronic 
structure investigations of 1-3. 
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All studied compounds are singlet stable, i.e. A~ >> 0. Consequently no other wave 
functions exist with closed shell character and with real orbitals which have 
similar or lower energy than the HF wave function ~o- The eigenfunctions C~ 
associated with A~ describe OFs of the f r o  7r* excitation type. Only in the case 
of 2a these OFs are connected with X~ whereas the slightly smaller A~,2 belong 
to eigenfunctions C~,2 consisting of OFs of the n ~ ~-* type. The eigenfuncti0ns 
with 7r-~ 7r* nature C~ of la /b ,  2b and 3b, C~ of 2a and C~ of 3a are dominated 
by two OFs which correspond to the excitation pattern of the a-band in the UV 
spectra of alternant hydrocarbons [24]. On the other hand C~ of 3a and C~ of 
3b are dominated by one OF corresponding to the p-band ( HOMO~  LUMO) 
excitation pattern [24]. The approximate validity of the pairing theorem [23] even 
within the framework of the INDO approach is demonstrated by the almost equal 
weight of the OFs ~42 "-~ ~D44 and (~41 "-) (~43 in C~ of la  and particular of lb. The 
second singlet roots )t~ if l a /b  or I with rr-SCF bond lengths are only slightly 
higher in energy than A ~. The corresponding eigenfunctions C~ describe p-band 
type OFs similar as C~ of 3a and C~ of 3b. 

The two eigenfunctions C~.2 of 2a with n-~ ~r* character consist predominantly 
of OFs from the non-bonding orbitals n+ and n_ to virtual 7r-orbitals, cf. Fig. 3. 
These n-orbitals are near-degenerate and their energy does not depend sig- 
nificantly on the chosen geometrical model. On the other hand the energy 
differences between the highest occupied and lowest virtual 7r-orbitals are much 
smaller for 2b than for 2a. Consequently the change in geometry from 2a to 2b 
reduces the energies of the 7r -~ 7r* OFs to a larger extent than those of the n -~ 7r* 
OFs so that for 2b the ~ ~ ~r* OFs can determine C~. All eigenfunctions C~ with 
the lower roots A ~ of the singlet instability problem (1) given in Table 1 describe 
solutions of the charge density wave type since all occurring OFs are symmetry 
breaking. 

Also the lowest roots A~ of the non-real (complex) instability problem for all 
studied compounds are well above zero and even within the ~?-criterion the INDO 
HF wave functions are lower in energy than complex solutions of the HF 
equations. All associated eigenfunctions C~ are dominated by one OF with the 
~r-~ It* type ~bh-* tht excitation (p-band pattern), only with 2b it is the ~bh_~ ~ tbt 
excitation. Similar to the singlet instability roots the complex root A ~ is at least 
1.2 eV lower for the aromatic models Xb than for the olefinic ones Xa and this 
applies as well to the lowest roots A '1 of the non-singlet (triplet) instability problem. 
The olefinic geometrical models are characterized either by a vanishing triplet 
root A t~ (la),  which will become negative if one takes into account all possible 
OFs, or small positive )ttl (2a, 3a) whereas A~1<< 0 and A~<0 is obtained for all 
aromatic models Xb. For 1 with the bond lengths taken from the ~r-SCF calculation 
only the lowest triplet root A '~ is negative. Therefore in all cases exist unrestricted 
HF solutions with either lower (l ,  2b, 3b) or similar energy (2a, 3a) than the 
restricted HF energy. The eigenfunctions Ct~ associated with h~ violate the spin 
and the spatial symmetry. Different to the non-real instability problem C'1 is now 
dominated in all compounds by the HOMO ~ LUMO OF. 
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In the case of the aromatic models Xb we can easily demonstrate why a triplet 
state with violations of the spatial orbitals will be more stable than the HF wave 
function. Here already the dominant OF ~bh ~ 4~t alone leads to a negative h~ 
since the diagonal matrix element (Eq. (2)) M~,l, ht < 0. Consequently the Fermi 
gap is limited from above g<Jhl+Kht. Furthermore we can write (M~,t, ht+ 
M~h~,hl)/2 =g--Jht = Tht where Tht stands for the triplet transition energy with 
respect to the HF energy of a triplet configuration characterized by the one- 
electron excitation ~bh--> 4~t. From Table 1 we obtain Tht = 0.23, 0.89 and 0.12 eV 
for lb, 2b and 3b. Clearly this triplet configuration ~bh --> ~b~ will mix with others 
~bi--> ~bk and then the off-diagonal coupling is given by the mean of M~ht, ik and 
M~h~,ik (Eq. (3)) [24]. Thus the magnitude of the reduction of the energy of the 
triplet state with the dominant ~bh --> ~bt excitation will be approximately the mean 
of (MChl, hl--ACl) (respectively (MChl, hl--A~) in the case of  2b) and (Mthl, hl--htl). 
Taking the corresponding values given in Table 1 we can estimate that these 
reductions will exceed the Tht values. Thus this triplet state will be more stable 
than the HF wave function. It should be stressed that this is not tantamount to 
a triplet ground state of  such a system since electron correlation stabilizes the 
HF wave function more than the triplet state. A corresponding analysis for the 
olefinic models Xa reveals markedly larger Th~ values in the range 2.3-2.5 eV and 
hence A t~ roots are larger as well compared with those of the aromatic models Xb. 

The lowest roots A~ of all three instability problems (1) turned out to be sig- 
nificantly smaller in the aromatic structures Xb than in the corresponding olefinic 
ones Xa. The same applies to the differences A ~-  A'I which signifies the greater 
importance of  ferromagnetic spin-correlation in the aromatic geometries. This 
finding is plausible since Xb represents a highly delocalized ~--system whereas 
alternating formal single and double bonds in Xa induce the formation of weakly 
interacting electron pairs to a certain extent. The difference between A ~(Xa) and 
A~(Xb) stems mainly from the different HOMO-LUMO gaps. In the aromatic 
models Xb the HOMO-LUMO gaps g are of similar magnitude as the Coulomb 
integrals Jm so that in connection with large exchange integrals Km according to 
Eq. (2) negative Mtht, ht and Ati values are obtained. The reason for the large 
Coulomb and exchange integrals with respect to HOMO and LUMO is the 
approximate validity of the pairing theorem in these compounds. 

5. HF instabilities of the ~r-SCF wave functions 

The zr-SCF HOMO-LUMO gaps g are considerably smaller than the INDO gaps 
and decrease similarly according to 2 > 1 > 3, cf. Table 2. Due to these extreme 
low g values we have to expect HF instabilities. Indeed we find triplet instabilities 
for 1-3 since Ate<0. The lowest roots At and h~ of the singlet and non-real 
(complex) instability problem are well above zero for all studied compounds 
similar as within the INDO approach. Consequently there exist neither other 
wave functions with closed shell character nor complex solutions of  the HF 
equations which are lower in energy than the restricted HF solution. The com- 
parison of  Table 1 and 2 reveals that the eigenfunctions C~ and Ct~ obtained 
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with the INDO and the zr-SCF Hamiltonian are dominated by the same type of  
OFs. The same is true for the eigenfunctions C~ of  the singlet instability problem 
with ~r--> ~r* nature which are related to the lowest h~ given in Table 1 and 2 if 
we disregard their order in the case of  the nearly degenerate first two eigenfunc- 
tions of  1 and 3a. 

The preselection of  configurations has proved indispensable with the studied 
compounds in order to obtain the true HF wave function. Otherwise the INDO 
procedure diverges for 2b and the zr-SCF procedure yields a wave function for 
3 which is singlet unstable due to a negative A~ caused by a negative M~hl.m 
diagonal matrix element for the H O M O + L U M O  (~bh--> ~b~) OF. According to 
Ref. [25] convergence difficulties in the classical SCF-algorithmus are to be 
expected if the following conditions are fulfilled: (i) singlet instability is present, 
(ii) the matrix D1/ZsDt/2 has only eigenvalues 6 < 1. The matrix elements of D 
and S are given a s  Dik,f l  = 8 ikS f l (8  k - - 8 i )  -1 and S~t = --M~ka~--D~)~. Although we 
do not use extrapolation or dumping procedures in our 7r-SCF method no 
convergence problems were encountered. This can be rationalized if we define 
M = MShl, hl and equate M = D - 1  - S where D and S are now 1 • 1 matrices since 
we consider only the q~h->~bl OF. We obtain ( M + S ) D = l  and hence 8 =  
D I / 2 S D  1/2 = SD. Since M < 0 it is SD > l and consequently 8 > 1. Thus condition 
(ii) is not fulfilled in contrast to most other molecules [25] and SCF convergence 
becomes possible although the wave function is singlet unstable. 

6. Conclusions 

The electronic structures and the Thouless instabilities of the extended conjugated 
~--electron acceptors 1-3 have been investigated by means of semiempirical INDO 
and ~r-SCF Hamiltonians. For the TCNQ analogue TCNP 3 one expects [2] an 
EA superior to that of TCNQ. The EA of  a molecule with N electrons is a 
property of  the corresponding ( N +  1) electron system whereas the IP is deter- 
mined by the ( N - 1 )  electron system. Correlations between the N electron HF 
wave function and EA or IP are obtained only via Koopmans'  theorem. However, 
there is some evidence [14, 26] that in the case of planar conjugated compounds 
such simple correlations are satisfactory. Therefore we can assume that our 
calculated electronic structures of the HF ground states of 1-3 and the derived 
IPs and EAs are reliable as long as the investigation of the Thouless stability 
conditions proved the independent particle model to be a sufficient approxi- 
mation. 

The INDO and 7r-SCF HF wave functions for 1-3 exhibit lowest roots of the 
singlet instability problem well above zero. Therefore the mean-field approach 
of the HF procedure is a sufficient approximation to the ground state which is 
not governed by correlation effects. The additional non-real stability means that 
we can consider our real HF wave functions as adequate representations of the 
ground states of 1-3, but the occurrence of (near) non-singlet instabilities under- 
lines the importance of spin correlation in these systems and demonstrates that 
a treatment of excited states and their energies with respect to the ground state 
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is possible only by inclusion of additional configuration interaction for ground 
and excited states. 

The I N D O  calculations showed that IPs and EAs of  t -3  depend considerably 
on the chosen geometrical model, the differences between olefinic and aromatic 
structures Xa and Xb amount to 1.0-1.5 eV. The ~r-SCF results for 1-3 correspond 
to a geometry intermediate of the olefinic and aromatic model. According to our 
results the replacement of X = CH2 (1) by the better acceptor function X = O 
(2) and X = C(CN)2 (3) leads to the expected increase of EA and hence to a 
better acceptor capability. We predict EA~2.5 ,  3.4 and 3.6 eV for 1, 2 and 3 
from our INDO calculations if we assume that the mean value of the EAs for 
the olefinic and aromatic structure corresponds to that obtained for the optimum 
geometry. Taking the ~r-SCF bond lengths for 1 we calculate EA~-2.4eV in 
almost agreement with the mean value of la  and lb. It is interesting to note that 
simple Hiickel-type calculations predict a similar EA ~ 3.4 eV for 3 L27]. The 
~'-SCF method together with Eq. (12) of Ref. [14] gives a somewhat smaller 
E A = I . 8  and 2.7eV for 1 and 2 but a slightly larger EA=4.1  eV for 3. Both 
theoretical approaches predict a better acceptor capability for 3 with respect to 
that of TCNQ [22]. In contrast to the r results the difference in EA of 2 
and 3 as obtained with the INDO Hamiltonian turns out significantly smaller 
than one would expect based on the comparison with the related acceptors 
p-benzoquinone and TCNQ [22]. There is an increase from 1 and 2 of EA and 
IP but the further increase of EA from 2 to 3 is accompanied by a decrease 
( INDO) or near-constancy (Tr-SCF) of IP. Therefore the HOMO-LUMO gap of 
3 is considerably smaller than that of 2 which indicates higher reactivity of 3 
with respect to 2. 

Finally we want to stress the importance of checking the reliability of quantum 
chemical calculations on compounds which are expected to exhibit extreme 
molecular properties, e.g. small HOMO-LUMO gaps or extreme large EAs or 
small IPs. The investigation of the stability of the HF wave function by means 
of the Thouless stability conditions constitutes a bridge between the independent 
particle model and approaches beyond the mean-field approximation which are 
very often not feasible with larger systems, 
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